
Direct Manipulation Tools for UNIX� Workstations

(First Draft)

J D Bovey M T Russell

February 19, 1998

ABSTRACT

Direct manipulation is one approach to the creation of software which can make use of

the high resolution graphics and pointing device available on a workstation like a Sun 3. A

direct manipulation tool is typically used to manipulate a complex system like, for example,

a �le system, and works by presenting a graphical image of the system which the user can

manipulate in order to manipulate the system itself.

The paper starts o� by discussing direct manipulation in general terms and then goes on

to describe three examples of direct manipulation tools which were written at the University

of Kent. The tools described are a �le system editor, a graphical debugger and a front end

to SCCS.

The remaining sections of the paper discuss the implementation of direct manipulation

tools, outline some of the user interface techniques that are applicable, and suggest a few

systems which may be amenable to the direct manipulation approach.

1 Introduction

High quality graphical workstations like Sun-3's and DEC Vaxstations have become much
cheaper and more widely available in the last few years and UNIX has become the standard
workstation operating system. These workstations, which have a high resolution pixel mapped
screen large enough for several useful windows, should be able to provide a general program-
ming environment which is enormously superior to a normal 80 by 24 glass teletype yet, even
today, it is a fair bet that what a workstation normally provides is two or three glass teletypes
rather than one. There is still a shortage of tools which enable the user to take advantage of
the fast high resolution graphics and pointing device available on a workstation.

One promising and generally applicable approach to creating tools which use graphics is what
Shneiderman has called direct manipulation [7, 8]. A direct manipulation interface presents
to the user an image of some underlying object or system which the user can then explore
and modify by manipulating the displayed image. Direct manipulation as an approach to user

�

UNIX is a trademark of AT & T Bell Laboratories in the USA and other countries.

1



2 DIRECT MANIPULATION OF THE UNIX FILE SYSTEM 2

interface construction is not restricted to high quality workstations - screen editors like vi and
spreadsheets like Lotus 123 are good examples of direct manipulation programs which need only
a glass teletype and a keyboard. On the other hand the presence of graphics and a pointing
device greatly increase the scope for creating direct manipulation tools. As one example - the
Apple Macintosh �nder makes heavy use of direct manipulation.

1.1 The displayed image

The displayed image is a crucial component of a direct manipulation interface since it is this
image that really is directly manipulated. The user acts on the displayed image and the result
may be a change to the underlying system which is re
ected in a change to the image, or it
may be a change in the way the image re
ects the underlying object. This duality seems to be
a general feature of direct manipulation interfaces. For example, in vi, deleting a line changes
the underlying system (i.e the �le being edited) whereas scrolling the display just changes the
current view of it.

The techniques and problems of direct manipulation are best illustrated by looking at concrete
examples and so in the next section we discuss direct manipulation applied to the UNIX �le
system. Later sections describe a direct manipulation debugger and a graphical front-end to
SCCS.

2 Direct manipulation of the UNIX �le system

The UNIX �le system is a fairly natural candidate for direct manipulation. The directory tree
can be displayed on the screen, letting the user rename �les and change �le attributes simply
by pointing and editing. Files or whole subtrees can be moved or copied by picking them up
with the cursor and inserting them at another place in the directory tree. A program of this
sort would have the functionality of mv, cp, chmod and ls.

There are two initial decisions that have to be made in the design of a �le system manipulating
tool:

(i) Whether changes to the displayed �le system image should be imposed on the �le system
as soon as possible or whether they should be postponed, for example until the program
exits.

(ii) Whether the program should impose �le system changes by calling standard UNIX utilities
like mv and cp or whether it should use system calls and library functions.

These decisions are important because they a�ect the degree of coupling between the display
handling part of the program and the application part. They also exhibit the trade o� which can
exist between reuseable, general display handling code and the provision of good user interface
feedback. Fraser [5] has described the construction of a �le system manipulating tool from a
modi�ed editor which creates a text representation of the directory structure on startup, lets
the user edit it, then writes the modi�cations back to the �le system on exit. In our opinion



3 THE FS FILE SYSTEM EDITOR 3

this approach is not really adequate for manipulating something as large and complex as the
UNIX �le system. The whole point of direct manipulation is that it makes the user feel that
the underlying system (UNIX �le system or whatever) is being manipulated directly and this
needs fast immediate feedback, especially after an attempt to perform an action which looks
ok, but is, in fact, illegal.

In the next section we describe the fs �le system editor and browser which has been written
at the University of Kent. Fs is an example of a tool written with a tight coupling between
display and application. All �le system modi�cations are performed straight away using UNIX
system calls with immediate feedback as to their success or failure.

3 The fs �le system editor

We will describe fs in some detail since it presents an example of some generally applicable
direct manipulation techniques. It also exhibits some of the problems and shortcomings of
this sort of interface. Fs presents the �le system like a large structured document in which

Figure 1: The fs �le system editor

directories can be expanded to show �les and subdirectories, �le names and permissions can
be edited simply by pointing and typing, and �les and directories can be moved around using
menu commands.

3.1 The fs �le system view

An initial major decision that needs to be made in designing a �le system manipulator concerns
the sort of graphical representation of the �le system used. There are plenty of possible ways of



3 THE FS FILE SYSTEM EDITOR 4

drawing a hierarchical �le system. For example it could be drawn as a tree with the directories as
internal nodes, the �les as leaves and lines joining connected nodes. Another possibility is that
used in the Macintosh with directories (i.e. folders) as boxes with their �les and subdirectories
freely positioned within them. A problem with both these approaches is that they are rather
pro
igate with screen space. The view of the �le system chosen for fs is similar to the output
from ls but with indentation used to show hierarchical structure. This representation does at
least have the merit of being compact and also of being immediately familiar to most UNIX
users.

Even with a compact representation, there is not enough room on a workstation screen to show
the whole of a UNIX �le system, and so ways have to be provided for the user to hide unwanted
detail. Fs does this in two ways:

(i) By providing scrolling controls so that what the user sees is, in e�ect, a window onto a
larger logical display surface.

(ii) By making use of hierarchical structure to let the user hide unwanted detail behind higher
objects. Hence the contents of a directory are not shown unless the directory is expanded
to show them. Similarly, information about a �le (like its owner and permissions) are
not displayed unless asked for. Once extra information is added to the display it can be
manipulated just like any other and it can be concealed again when it is no longer needed.

Commands in fs which expand and collapse directories or show and hide �le details are exam-
ples of operations which modify the way the display shows the underlying system rather than
modifying the system itself. The two sorts of operation need to exist side by side and fs helps
the user distinguish between them by placing �le system modifying command buttons in the
top row of the menu and view-modifying command buttons in the bottom row.

3.2 User input to fs

The user can manipulate the fs display (and hence the �le system itself) in two ways:

(i) By directly editing the display itself. This is the way that �le names and �le attributes
like permission and owner are changed. When a �le name is edited the new name is not
imposed on the �le system until the user tries to move on to something else, for example
by selecting another �le for editing.

(ii) By applying menu commands to selected �les or directories within the display. The way
this is organised is discussed in the next section.

3.3 Command syntax

Menu driven programs need a command syntax in much the same way that keyboard driven
programs do. For example, �le deletion in fs could be done by letting the user select the delete
button and then the �les to be deleted. Alternatively, the syntax could be such that the user
needs to select the �les �rst, then the delete command. The best way round is a matter for



3 THE FS FILE SYSTEM EDITOR 5

debate as there are advantages and drawbacks in both, but fs uses the latter approach and as
far as possible has a post�x command syntax. A post�x syntax has the advantage of avoiding
modes but it does involve letting the user select multiple arguments if it is not going to be
extremely tedious to use.

In fs, multiple selection works as follows. A set of adjacent �les or directories is selected by
pressing the left hand mouse button with the cursor positioned over the �rst, then moving the
cursor to the last while keeping the button down and �nally releasing the button with the cursor
over the last object to be selected. This operation, called dragging, is fairly natural and quick
and also allows good feedback in that the newly selected �les and directories can be highlighted
as the cursor passes over them. Non-adjacent objects can be added to the selected set by using
the right hand mouse button instead of the left.

Some commands, in particularmove and copy are not so easy to make post�x because a destina-
tion has to be speci�ed in addition to the objects being moved or copied. Fs solves this problem
by using an in�x syntax for these operations. First the user selects the �les to be moved, then
the move command, then the destination directory. This is not entirely satisfactory since it
means that fs has to go into a special select destination mode after the command button is
selected. On the other hand there seems to be no obviously better way of handling this sort of
situation.

3.4 Using fs

In its original form, fs was executed with a starting directory which was initially expanded to
show its �les and subdirectories. The starting directory's subdirectories could then be expanded
in turn as could any directory whose name was visible on the display and in this way the display
could be organised to show the �les and directories that where of interest. In practice expansion
alone proved to be rather cumbersome in that an individual �le could not be accessed without
completely expanding every directory between it and the starting directory. The current version
of fs lets the user type in pathnames directly; an entered pathname acts like a sort of goto in that
the display is expanded just enough to include the named �le which is highlighted and centered
in the display. In practice, most users of fs seem to use a combination of typed pathnames and
directory expansion to move around in the �le system.

3.5 Limitations

Although fs combines the functionality of ls, mv, cp and several other UNIX utilities it has not
replaced them, even at UKC. A major reason for this is the overhead in starting up a graphical
tool as against running a simple program in an existing shell window. Fs starts up quickly on a
Sun 3 but it still involves the creation of a window and few people would use it to, say, list the
�les in their current directory. One way of lessening the start up overhead which is adopted by
some users is to keep an fs running all the time but iconise it when it is not needed.

Another limitation of fs is one it has in common with other direct manipulation programs,
which is that there is no way to perform sophisticated global operations. It is not obvious how
such facilities could be added. For example, it is not easy to see how the interface could be



4 A DIRECT MANIPULATION DEBUGGER 6

naturally extended to let the user specify an operation like, say, turning on read permission in
a group of �les.

3.6 Interfacing to other tools

One of the often stated strengths of UNIX is the way that small, general tools can be connected
together to perform specialised and complex tasks. Fs does communicate with some of our own
graphical tools; the View menu button calls up the intelligent �le viewing program vf [2] on the
selected �les and this allows a user to look at the contents of �les. Similarly, the Vdi� button
can be used to execute the graphical �le di�erence program vdi� [2] on a pair of selected �les
and the Edit button can be used to invoke an editor. On the other hand there is currently
no way to call, say, grep or wc on a selection of �les from the display. A general command
execution facility is on the list of planned future extensions but more work needs to be done on
�nding general purpose ways in which graphical tools like fs can be used in conjunction, both
with other graphical tools and with the standard UNIX utilities.

4 A direct manipulation debugger

One example of a fairly complex system which often needs to be explored and manipulated is the
internal state of a temporarily stopped computer program; a program which does this is called
a debugger. UNIX has several established command driven debuggers and some workstation
debuggers which use graphics [4, 1] but ours, called ups, is the only one we know about which
really uses direct manipulation. Ups is similar to dbx and sdb in that it is a source level, run time
and postmortem debugger aimed at languages like C, Pascal and Fortran. An earlier version of
the ups debugger was described in [3].

4.1 The ups displayed image

Ups uses a split window to display two views of the target program. The view in the top is
based on the stack of currently active function calls whereas the view in the bottom is of source
code. The display in the top region has a hierarchical structure similar to that used in fs,
but with a hierarchy of variables within active functions and, if the language is C, structure
elements within structure variables. Hence, to view a list of a function's variables the user
would use a menu option to expand the function, and to view the elements of a structure the
user would expand the structure variable. Any structure element which is itself a structure or
structure pointer can be expanded in turn, providing a convenient way of exploring linked data
structures.

The general style of ups is very similar to that of fs in that it uses a combination of editable
�elds and post�x menu commands. A breakpoint can be moved by editing its function name
or line number - di�erent elements of an array are viewed by editing the subscript �eld in the
display. Menus are used by �rst selecting the object to be manipulated and then then selecting
a menu command from the menu at the top. Ups di�ers from fs however in that the displayed
menu of available commands depends on the type of object selected; the commands appropriate



4 A DIRECT MANIPULATION DEBUGGER 7

Figure 2: The Ups debugger

for manipulating a variable are very di�erent from those appropriate for manipulating, say, a
breakpoint.

Another di�erence between ups and fs is that in ups the emphasis is more on exploration rather
than manipulation of the underlying system. A large proportion of the ups menu commands
change the way the display describes the state of the program rather than changing the state
of the program itself. As an example, the menu for manipulating variables consists entirely of
commands to alter the way they are displayed.

Ups is like fs in that the target program's data structures can be explored by a combination of
object expansion and direct goto. All of a function's local variables can be added to the display
by using expand menu button, or individual variables can be added by typing in their names.

4.2 The source window

The source code section of the ups display is used for inserting breakpoints and can also be
used for controlling the execution of the target program. On selecting a source line with the
mouse and cursor, the debugger pops-up a menu with the options add breakpoint and execute



5 A VISUAL FRONT END TO SCCS 8

to here. Selecting add breakpoint adds a breakpoint to the list in the top window where it can
be manipulated by editing just like any other breakpoint. Selecting execute to here inserts a
temporary breakpoint at the line and starts the program running with all its other breakpoints
disabled. When conditional breakpoints are implemented they will be done by inserting an
editable condition expression between two source lines in the source code display.

Another way in which the ups source code display is used is as an alternative way of entering
the name of a variable to be added to the top part of the display. This is done by clicking the
mouse button over an occurrence of the variable name in the source code. It is worth pointing
out that, although a program may contain several variables with the same name, selecting a
variable from the source code automatically speci�es the correct one. The context in which
the variable is being used (e.g. the source �le or function) is e�ectively entered for free. The
automatic speci�cation of context is a major advantage of the use of direct manipulation.

5 A visual front end to SCCS

Another complicated system which can bene�t from a graphical manipulation tool is a family
of source modules with revision histories, access controls and so on. There are a number of
IPSE's which incorporate source code control and Sun's Network Software Environment uses
some direct manipulation. The program described here is much more modest - a visual front
end to the existing UNIX source code control system SCCS.

SCCS stores a source module as a series of incremental updates called deltas with each delta
having a version number and release number. In addition to the source code changes, a delta
will also have associated with it a date and a comment explaining why it was made. Each of
the family of source modules which makes up a single program will have its own independent
series of deltas and in practice the delta numbering of the source modules does not keep in step.
Hence, a given version of the program may be built from, say, delta 3.2 of output.c and delta
3.10 of input.c.

Once a delta has been created it is not usually changed and so there is probably not much point
in writing a program to modify existing deltas. On the other hand there is plenty of scope for
a program which displays a graphical image of a collection of SCCS �les in a way which makes
it easy to see how the deltas are related in time. The program could then use the techniques
already described to let a user select and examine collections of deltas.

The final version of the paper will have a picture of vsccs

followed by of short description of how it is used.

6 Implementing direct manipulation software

6.1 Programming techniques

Direct manipulation programs of the type we have been describing are essentially event driven;
the main loop of the program repeatedly waits for the next event and, when one arrives, passes



6 IMPLEMENTING DIRECT MANIPULATION SOFTWARE 9

it to the appropriate part of the program. The events handled by this loop are fairly low level
events like mouse button changes, mouse movements and keyboard key depressions.

In each of the programs, the main display area is implemented using a large linked data structure
with a node for each item in the display. Hence in fs there would be a node for each �le or
directory which has been added to the display. Each node contains �elds describing how and
where is should be displayed, �elds which identify its associated object in the underlying system
and also pointers to functions to be called when the �eld is selected or edited or when a menu
option is applied to it. The linked display structure is dynamic in that new nodes can be added
or removed when, for example, a directory is expanded or collapsed in fs. The approach owes
something to object oriented programming in that each node has associated with it both data
and code for manipulating the data.

6.2 User interface tools

Writing graphical software from scratch is expensive in programming e�ort; fs alone was about
one man year of work. Hence it is natural to look to user interface tools like, for example, the
X toolkit [6] as a way of building direct manipulation tools more easily. At present there are
some aspects of graphical programming for which tools are extremely useful, for example, the
presentation of menus. Our menus were all generated using our own menu package but if we
wanted to replace them with toolkit menus then it would not be too hard to do.

Some other aspects of programs like fs, ups and vsccs are not so amenable to the use of high
level tools. In particular there are no tools which help much with the organization of the main
display and it is quite hard to envisage what sort of high level tool could be used for this. As
an illustration of the problems, it is worth looking at the way in which multiple object selection
works in the three programs.

In the case of fs there is only one menu and the objects which can be selected are fairly
homogeneous so there is no need to constrain the set of objects selected. If the set contains
both �les and directories and the command, expand say, can only be applied to directories then
the �les are simply ignored.

In ups the objects are much less homogeneous and the menu of commands depends on the type
of object selected. It follows from this that ups can only allow the selection of one type of object
at a time; once an object has been selected, attempts to select additional objects which are not
the same type are ignored. This means, for example, that if the mouse button is pressed with
the cursor over a variable and then dragged down the display then only the variables it passes
over will be selected and �les and functions will be ignored.

The demands of vsccs are di�erent yet again. Most operations in SCCS need to be given a list
of deltas with just one delta per source �le and so the selection mechanism needs to constrain
the selected set of deltas to be of this type. Selecting a new delta for a source �le should cause
any previously selected delta for the same source �le to be deselected but should not a�ect
selected deltas for other source �les.

The three programs described operate in a super�cially similar way. The program creates a
display consisting of small text �elds with each text �eld being associated with an object in



7 DIRECT MANIPULATION USER INTERFACE DEVICES 10

the system being manipulated and with the �elds arranged in a way intended to describe the
structure of the system. The user can then manipulate or explore the system by selecting a
collection of text �elds followed by a command from a menu. The command then takes the
selected objects as its arguments. This similarity of structure suggests that it should be possible
to create a general purpose display manager which can be attached to a number of di�erent
systems. The three programs do in fact have a lot of code in common but it is hard to see
how a general purpose display manager which is not extremely complicated could provide the
selection constraints needed for even these three programs. This is not to say that user interface
tools should not be written, they are certainly needed, but rather that the design of su�ciently
general tools is a far from trivial task.

7 Direct Manipulation user interface devices

This section contains a brief summary of some user interface devices which can be useful in
building direct manipulation tools. Examples of some of these techniques can be found in the
tools described above, whereas others, like object dragging, have not been used in our software.
The list does not pretend to be exhaustive - for one thing, new techniques are probably being
invented all the time.

editable text �elds The user uses the mouse to insert a caret in a piece of text in the display
and then uses the keyboard to insert or delete characters. This is useful when the item
being manipulated is textual (like a �le name) or has a natural textual representation
(�le permissions). It often does not make sense to insist that the �eld being edited is
legally permissible after each keystroke and so fs waits until the user tries to move onto
something else before trying to impose the modi�ed �eld on the �le system. If the new
�eld is illegal, say a �le name which duplicates an existing one, then the user can be
prevented from proceeding until the problem has been corrected. In addition to this �nal
check, it is often possible to ensure that the editable �eld is syntactically correct simply
by rejecting illegal characters (such as space characters in a �le name) as they are typed.

menu commands applied to selected objects Menus can be presented in di�erent ways;
we favour static menus with pop-up submenus, but Macintosh style pull-down menus seem
to be developing as a standard. The use of menus was discussed in the section on fs, and
there is a further discussion in [3].

pop-up menus Pop-up menus are most e�ective when only one object needs to be manipu-
lated at a time. On using the mouse to select an object from the display and depressing
a mouse button the selected object is highlighted and a menu of operations which are
applicable to it is popped up. The user can then select an operation from the menu by
dragging the cursor into the menu slot and releasing the mouse button. Pop-up menus
have the advantage that they provide good immediate feedback; they also support the feel
of direct manipulation since to manipulate an object you point at it and are immediately
told what operations are available. On the other hand, pop-up menus can be hard to
manage when the set of available operations is large. We have not used pop-up menus
much but they are used in the source code area of the ups debugger.



8 FEATURES OF A GOOD DIRECT MANIPULATION INTERFACE 11

pick up and drag Manipulation by picking up and dragging will be familiar to anyone who
has used an Apple Macintosh. If fs worked that way then you would move a �le by
pointing at it and dragging its name to a new destination. One problem with dragging
of this sort is that both the source and destination really need to be visible at the same
time and with a scrollable display like fs this is not always the case.

8 Features of a good Direct manipulation interface

There are a number of features that should be possessed by an ideal direct manipulation inter-
face. It should be stressed that these are suggested ideals rather than claimed properties of our
own tools.

(i) It should make users feel as if they actually are directly manipulating the underlying
system and this means good feedback.

(ii) Any change to the underlying system should be immediately re
ected in a change to the
display.

(iii) The user should not be able to attempt an operation which looks alright but is in fact
illegal

(iv) If (iii) does happen then the user should be told why he cannot do what is being attempted.

(v) It should not be possible to mistake changes to the view for changes to the target or vice
versa.

9 Other possible candidates for direct manipulation

These are just a few possibilities.

� An NFS distributed �le system At Kent we have only about 16 DEC and Sun work-
stations but since they have been acquired piecemeal on di�erent grants and for di�erent
purposes, most of them have their own disks. At present these machines are linked to-
gether using NFS mounts and symbolic links, to form what appears to the user to be a
single homogeneous �le system. A user, who can use any workstation and see the same
environment, does not need to know which machine any individual �le is stored on. The
system administrator, on the other hand, who has to handle disks �lling up and machines
out of action, needs to know exactly what �les are stored where and how the system is
linked together. What is needed is a direct manipulation program which shows the NFS
�le system in terms of disk partitions, NFS mounts, directories, symbolic links etc.

� Debuggers for other languages The call stack based view of the program state used
by ups is only appropriate for a languages like C and Fortran. A direct manipulation
debugger for Prolog or Miranda or Occam would need to look very di�erent.

� The screen layout of a graphical program



10 CONCLUSIONS 12

� A collection of electronic mail messages

� A software speci�cation in Z or VDM

10 Conclusions

There is an almost unlimited scope for creation of direct manipulation tools for graphical
workstations. As well as the wide range of systems that can be manipulated, each system is
capable of being displayed in a number of di�erent ways. The possibilities are further increased
by the emergence of standardised networked windowing systems like X and NeWS since they
remove the need for the tool and display to be on the same machine. It is quite possible to
have a program which directly manipulates, for example, a database, running on the same large
machine as the database and talking to an X display server on a workstation.

On the other hand direct manipulation tools are, like all interactive graphical software, fairly
expensive to write. Windowing standards like X help o�set the cost by making the software
much more portable but there is also a need for appropriate user interface tools.

References

[1] Evan Adams and Steven S Muchnick, `Dbxtool: a window based debugger for Sun work-
stations', Software { Practice and Experience, 16, (1986), pp. 653-669.

[2] David Barnes, Mark Russell and Mark Wheadon, `Developing and Adapting UNIX Tools
for Workstations' Submitted to EUUG Autumn 88 Conference, Computing Laboratory,
The University of Kent, October 1988.

[3] J D Bovey, `A Debugger for a graphical workstation' Software { Practice and Experience,
17, (1987), pp. 647-662.

[4] T A Cargill, `The feel of Pi', Proceedings Winter USENIX Meeting, Denver, January, 1986.

[5] Christopher W Fraser, `A Generalized Text Editor', Communications of the ACM, 23, 3
(1980) pp. 154-158.

[6] Joel McCormack and Paul Asente, `Using the X Toolkit or How to Write a Widget', paper
submitted to USENIX Summer 1988, also available on X11 distribution tape.

[7] Ben Shneiderman, `Direct Manipulation : a step beyond programming languages' IEEE
computer, 16, 8 (1983), pp. 57-69.

[8] Ben Shneiderman, Designing the User Interface, Addison-Wesley, Reading, Mass., 1986.


